Summary The study shows that deep machine learning can be utilized to more accurately identify erythema migrans rashes in early Lyme disease. Recognition of the EM rash is crucial to […]
Lyme Disease
PET Imaging of Glial Activation in Patients with Post Treatment Lyme Disease
Robust B Cell Responses Predict Rapid Resolution of Lyme Disease
Incidence of Lyme Disease Diagnosis in a Maryland Medicaid Population
Cognitive Decline in Post-treatment Lyme Disease Syndrome
Obstacles to Diagnosis and Treatment of Lyme Disease in the USA
To our knowledge, this is the first study to explore factors which may contribute to a delay in diagnosis and treatment of Lyme disease. We identified distinct, potentially modifiable risk factors between onset of first Lyme disease symptoms and treatment. Targeting these drivers may reduce time to diagnosis and treatment and reduce the occurrence of late-stage Lyme disease complications.